Multiplication of Polynomial by Polynomial

Multiplication of Polynomial by Polynomial

To multiply a polynomial by a polynomial , multiply each term of the first polynomial by each term of the second polynomial and sum up the results.

How to multiply a monomial by another monomial – see §13 of this Guide.

Examples of Problem Solving

Example 1. Find the product:

a) $(2x+5)(3x-7) = 2x(3x-7)+5(3x-7) = 6x^2-14x+15x-35 = 6x^2+x-35$

b) $(x+y)(x-2y) = x(x-2y)+y(x-2y) = x^2-2xy+xy-2y^2 = x^2-xy-2y^2$

c) $(a^2-b)(b^2+1) = a^2 (b^2+1)-b(b^2+1) = a^2 b^2+a^2-b^3-b$

d) $(k+m)(k-m) = k(k-m)+m(k-m) = k^2-km+km-m^2 = k^2-m^2$

Example 2. Simplify the expression:

a) $(x-2y)(x+2y)+4y^2 = x(x+2y)-2y(x+2y)+4y^2 = x^2+2xy-2xy-4y^2+4y^2 = x^2$

b) $(a-b)(b-a)-2ab = a(b-a)-b(b-a)-2ab = ab-a^2-b^2+ab-2ab = -a^2-b^2$

Example 3*. Write as a polynomial:

$$(\frac{1}{4} x+\frac{1}{3} y+\frac{1}{2}z)(\frac{1}{4} x-\frac{1}{3} y+\frac{1}{2} z) = \frac{1}{12} (3x+4y+6z)\cdot \frac{1}{12} (3x-4y+6z)=$$

$$ = \frac{1}{144} (3x(3x-4y+6z)+4y(3x-4y+6z)+6z(3x-4y+6z) ) = $$

$$ = \frac{1}{144} (9x^2-12xy+18xz+12xy-16y^2+24yz+18xz-24yz+36z^2 )= $$

$$ = \frac{1}{144} (9x^2-16y^2+36z^2+36xz) = \frac{1}{16} x^2- \frac{1}{9} y^2+ \frac{1}{4} z^2+ \frac{1}{4} xz $$

Example 4. Solve the equation:

a) (x-1)(x+5) = (x+2)(x-4)

$ x^2+5x-x-5 = x^2-4x+2x-8 $

4x+2x = -8+5

6x = -3

x = -0,5

b) (2x-1)(2x+7) = (3+2x)(5+2x)

$4x^2+14x-2x-7 = 15+6x+10x+4x^2$

12x-16x = 15+7

-4x = 22

x = -5,5

c) $(y^2-y+1)(y^2+y+1) = y^4+y^2+y$

$ y^4+y^3+y^2-y^3-y^2-y+y^2+y+1 = y^4+y^2+y $

y = 1

d) $ (m-\frac{1}{5})(m+\frac{1}{5}) = m^2-m $

$m^2+ \frac{1}{5} m-\frac{1}{5} m- \frac{1}{25} = m^2-m $

$m = \frac{1}{25}$

ะด) (11+k)(44+k) = (16+k)(32+k)

$484+11k+44k+k^2 = 512+16k+32k+k^2$

55k-48k = 512-484

7k = 28

k = 4

Example 5. Prove an identity:

a) (x-3)(x+8) = (x-2)(x+7)-10

$$ (x-3)(x+8) = x^2+8x-3x-24 = x^2+5x-24 $$

$$(x-2)(x+7)-10 = x^2+7x-2x-14-10 = x^2+5x-24$$

The equality is an identity.

b) (x+5)(x+4)-(x+2)(x+7) = 6

$$ (x+5)(x+4) = x^2+4x+5x+20 = x^2+9x+20 $$

$$ (x+2)(x+7) = x^2+7x+2x+14 = x^2+9x+14 $$

$$ (x^2+9x+20)-(x^2+9x+14) = 6 $$

The equality is an identity.

User Rating

for the week
  • for the week
  • one month
  • three months
    Sign Up
    Log in
    You must accept the user agreement
    Log In
    Login with
    Password recovery
    Complain
        Ask question