Multiplication and Exponentiation of Monomials

Algorithm for Multiplication of Monomials

  1. Find the coefficient of the resulting monomial: multiply all the coefficients of the multiplied monomials.
  2. Using the properties of exponents and multiplication, find the total power for each of the variables. Write the corresponding factors.

The product of monomials is a monomial.

Consider: $ (\frac{2}{3} a^2 b) \cdot (3ab^5 )$

Step 1. Coefficient $ \frac{2}{3} \cdot 3 = 2 $

Step 2. Powers of the variables: $ a^{2+1} = a^3, b^{1+5} = b^6 $

Therefore: $(\frac{2}{3} a^2 b) \cdot (3ab^5 ) = \frac{2}{3} \cdot 3\cdot a^{2+1} \cdot b^{1+5} = 2a^3 b^6$

Algorithm for Exponentiation Of Monomials

Raise each monomial factor to the power and multiply the results.

A monomial raised to a power is a monomial.

Consider: $ (\frac{2}{3} a^2 b^5)^3 $

Raise each factor to the power: $ \left(-\frac{2}{5}\right)^3 = \frac{2^3}{5^3} = \frac{8}{125}, (a^2 )^3 = a^6,(b^5 )^3 = b^15 $

Therefore: $ (\frac{2}{3} a^2 b^5)^3 = \left(-\frac{2}{5}\right)^3 \cdot (a^2 )^3 \cdot (b^5 )^3 = \frac{8}{125} a^6 b^{15} $

Examples of Problem Solving

Example 1. Multiply the monomials:

a) $ (-3a^2 xy^5 )\cdot( \frac{1}{9} ax^4 y^2 ) = -3 \cdot \frac{1}{9} \cdot a^{2+1} \cdot x^{1+4} \cdot y^{5+2} = -\frac{1}{3} a^3 x^5 y^7 $

b) $ (7az)\cdot(- \frac{1}{4} a^2 xy) \cdot (16xz^4 ) = -7\cdot \frac{1}{4} \cdot 16 \cdot a^{1+2}\cdot x^{1+1}\cdot z^{1+4} = -28a^3 x^2 z^5 $

Example 2. Find the cube of the monomial:

a) $ (3a^5 by^2 )^3 = 3^3\cdot(a^5 )^3\cdot b^3\cdot(y^2 )^3 = 27a^{15} b^3 y^6 $

b) $ \left(-\frac{1}{2}xy^2 z^7\right)^3 = \left(-\frac{1}{2}\right)^3\cdot x^3\cdot(y^2 )^3\cdot(z^7 )^3 = -\frac{1}{8} x^3 y^6 z^{21} $

Example 3. Simplify the expression:

a) $ 3x^5 \cdot \left(\frac{1}{24}x^2 y^3\right)^2 \cdot (-64y)=- \frac{3\cdot64}{24} \cdot x^{5+4} \cdot y^{6+1} = -\frac{3\cdot8^2}{3\cdot8} x^9 y^7 = -8x^9 y^7 $

b) $ (-2ab)^3\cdot \underbrace{0,125}_{=1/8\text{}} a^2 c = -2^3\cdot \frac{1}{8} \cdot a^{3+2} b^3 c = -a^5 b^3 c $

c) $ \left(1\frac{2}{3}bz^7\right)^5 \cdot \left(-\frac{3}{5}az\right)^4 = \left(\frac{5}{3}\right)^5 \cdot \left(-\frac{3}{5}\right)^4 \cdot a^4 b^5 z^{5\cdot7+4} = \frac{5}{3} a^4 b^5 z^{39} $

d) $ (-0,5m^2 n^5 )^2 \cdot 12mn^3 = \left(-\frac{1}{2}\right)^2 \cdot 12 \cdot m^{4+1} \cdot n^{10+3} = 3m^5 n^{13} $

Example 4*. Find the value of n that make the equality true:

a) $ \left(\frac{1}{6}xy\right)^n \cdot 72x = 2x^3 y^2 $

Write the equations for the coefficients and powers on the left and on the right:

$$ {\left\{ \begin{array}{c} \left(\frac{1}{6}\right)^n \cdot 72 = 2 \\ x^{n+1} = x^3 \\ y^n = y^2 \end{array} \right.} $$

Thus, n = 2. Check:

$$ \left(\frac{1}{6}xy\right)^2 \cdot 72x = \left(\frac{1}{6}\right)^2 \cdot 72 \cdot x^{2+1} \cdot y^2 = 2x^3 y^2 $$

Answer: n=2

b) $ (-1 \frac{1}{3} a^2 b)^n \cdot 0,75b^3 = 1 \frac{1}{3} a^4 b^5 $

Write the equations for the coefficients and powers on the left and on the right:

$$ {\left\{ \begin{array}{c} \left(-1\frac{1}{3}\right)^n \cdot 0,75 = 1\frac{1}{3} \\ a^{2n} = a^4 \\ b^{n+3} = b^5 \end{array} \right.} $$

Thus, n = 2. Check:

$$ \left(-1\frac{1}{3}a^2b\right)^2 \cdot 0,75b^3 = \left(-\frac{4}{3}\right)^2 \cdot \left(\frac{3}{4}\right) \cdot a^4 \cdot b^{2+3} = \frac{4}{3}a^4b^5 = 1\frac{1}{3}a^4b^5 $$

Answer: n = 2

User Rating

for the week
  • for the week
  • one month
  • three months
    Sign Up
    Log in
    You must accept the user agreement
    Log In
    Login with
    Password recovery
    Complain
        Ask question