Factoring Polynomials by Grouping
Algorithm for Factoring by Grouping
- Break the polynomial into groups that share a common factor. If there are no such groups, go to step 4.
- Factorize each group. Take the common factor out; divide all terms in the group by that factor, and put the result in parentheses.
- Go to step 1.
- End the task.
About factorizing a polynomial – see §19 of this Guide.
Examples of Problem Solving
Example 1. Factorize the polynomial:
a) $9x^2-27xy+7xz-21yz = (9x^2-27xy)+(7xz-21yz) = $
$ = 9x(x-3y)+7z(x-3y) = (9x+7z)(x-3y) $
b) ax+3-3x-a = (ax-3x)+(3-a) = x(a-3)-(a-3) = (x-1)(a-3)
c) $ x^3+x^2+x+1 = (x^3+x^2 )+(x+1) = x^2 (x+1)+(x+1) = (x^2+1)(x+1)$
d) $3a^2-3ax-7a+7x = (3a^2-3ax)-(7a-7x) = 3a(a-x)-7(a-x) = $
$ = (3a-7)(a-x)$
Example 2. Evaluate the expression:
a) $22,5 \cdot 11,3+77,5\cdot16,5+22,5\cdot16,5+77,5\cdot11,3 =$
$ = (22,5\cdot11,3+77,5\cdot11,3)+(22,5\cdot16,5+77,5\cdot16,5) = $
$ = 11,3(22,5+77,5)+16,5(22,5+77,5) = (11,3+16,5)(22,5+77,5) = $
$ = 27,8\cdot100 = 2780$
b) $ 38,7^2-38,7\cdot28,7+61,3^2-61,3\cdot51,3 =$
$ = (38,7^2-38,7\cdot28,7)+(61,3^2-61,3\cdot51,3) = $
$= 38,7(38,7-28,7)+61,3(61,3-51,3) = (38,7+61,3)(61,3-51,3) =$
$ = 100 \cdot 10 = 1000$
Example 3. Solve the equation:
a) x(x-3)+2(x-3) = 0
(x+2)(x-3) = 0 $\Rightarrow \left[ \begin{array}{cc} x+2 = 0 \\ x-3 = 0 \end{array} \right. \Rightarrow \left[ \begin{array}{cc} x_1 = -2 \\ x_2 = 3 \end{array} \right. $
b) $ x^3-5x^2+x-5 = 0 $
$x^2 (x-5)+(x-5) = 0 $
$ (x^2+1)(x-5) = 0 \Rightarrow \left[ \begin{array}{cc} x^2+1 = 0 \\ x-5 = 0 \end{array} \right. \Rightarrow \left[ \begin{array}{cc} no roots \\ x = 5 \end{array} \right. \Rightarrow x = 5 $
$(x^2+1 \ge 1,$ cannot be equal to 0)
c) $x^4-4x^3+x = 4$
$(x^4-4x^3 )+(x-4) = 0$
$x^3 (x-4)+(x-4) = 0$
$(x^3+1)(x-4) = 0 \Rightarrow \left[ \begin{array}{cc} x^3+1 = 0 \\ x-4 = 0 \end{array} \right. \Rightarrow \left[ \begin{array}{cc} x_1 = -1 \\ x_2 = 4 \end{array} \right. $
г*) $ x^4+x^3+2x^2+x^2+3x+2 = 0$
Note that $(x+1)(x+2) = x^2+2x+x+2 = x^2+3x+2$
Therefore:
$x^2 (x^2+3x+2)+(x^2+3x+2) = 0$
$(x^2+1)(x^2+3x+2) = 0 \Rightarrow \left[ \begin{array}{cc} x^2+1 = 0 \\ x^2+3x+2 = 0 \end{array} \right. \Rightarrow \left[ \begin{array}{cc} no roots \\ (x+1)(x+2) = 0 \end{array} \right. \Rightarrow$
$\Rightarrow \left[ \begin{array}{cc} x+1 = 0 \\ x+2 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{cc} x_1 = -1 \\ x_2 = -2\end{array} \right. $
Example 4*. Factorize the trinomial:
a) $x^2+5x+6 = (x^2+3x)+(2x+6) = x(x+3)+2(x+3) = (x+2)(x+3)$
b) $x^2+7x+6 = (x^2+6x)+(x+6) = x(x+6)+(x+6) = (x+1)(x+6)$
c) $x^2+7x-30 = (x^2+10x)-(3x+30) = x(x+10)-3(x+10) = (x-3)(x+10)$
d) $x^2-5x-50 = (x^2-10x)+(5x-50) = x(x-10)+5(x-10) = (x+5)(x-10)$
Example 5. Prove that
a) $5^5-5^4+5^3-5^2$ is divisible by 13
Factorize the polynomial:
$(5^5-5^4 )+(5^3-5^2 ) = 5^4 (5-1)+5^2 (5-1) = (5^4+5^2 )(5-1) = (5^4+5^2 )\cdot4 =$
$= 4\cdot5^2 (5^2+1) = 4\cdot25\cdot26 = 4\cdot25\cdot2\cdot13 $
Q.E.D.
b) $2^{13}-2^{10}-2^9+2^6$ is divisible by 17
Factorize the polynomial:
$(2^{13}-2^{10} )-(2^9-2^6 ) = 2^{10} (2^3-1)-2^6 (2^3-1) = (2^{10}-2^6 )(2^3-1) = 2^6 (2^4-1)(2^3-1) = 64\cdot17\cdot7$
Q.E.D.
Example 6. Write as a product of three factors:
a) $ a^2 b-a^2 c-abx+acx = (a^2 b-a^2 c)-(abx-acx) = a^2 (b-c)-ax(b-c) = $
$= (a^2-ax)(b-c) = a(a-x)(b-c) $
b) $6x^2 y-10xy^2+9x^2 z-15xyz = (6x^2 y+9x^2 z)-(10xy^2+15xyz) =$
$= 3x^2 (2y+3z)-5xy(2y+3z) = (3x^2-5xy)(2y+3z) = x(3x-5y)(2y+3z)$
Example 7*. Factorize the expression:
a) $3x^{n+1}-x^n-3x+1 = (3x^{n+1}-x^n )-(3x-1) = x^n (3x-1)-(3x-1) =$
$ = (x^n-1)(3x-1) $
b) $ax^{n-1}+3x^n-3x-a = (3x^n+ax^{n-1})-(3x+a) = x^{n-1} (3x+a)-(3x+a) =$
$ = (x^{n-1}-1)(3x+a)$