Expanding Brackets

p.1. Rules of Expanding Parentheses

Expanding parentheses in an expression is an identity transformation that allows removing a pair of parentheses.

Rules of expanding parentheses containing a monomial (-a)

For addition:

b + (-a) = b - a

b - (-a) = b + a

(-a) + b = -a + b

For multiplication:

(-a)b = -ab

a(-b) = -ab

(-a)(-b) = ab

Rules of expanding parentheses containing a polynomial, for addition

Remove the parentheses without changing the signs of the terms inside, if:

1. there is a «+» sign in front of the left parenthesis: a + (b - c + d) = a + b - c + d

2. the expression begins with a parenthesis without any signs:

(a+b-c)+d=a+b-c+d


Remove the parentheses changing the signs of the terms inside to the opposites, if:

1. there is a «-» sign in front of the left parenthesis: a - (b - c + d) = a - b + c - d

2. the expression begins with a «-» sign in front of a parenthesis:

-(a + b - c) + d = -a - b + c + d

Using these rules, you can expand parentheses in any expression. For example:

Expanding Parentheses when Multiplying Monomial and Polynomial

a +b(c + d - f + e) = a + bc + bd - bf + be

a - b(c + d - f + e) = a + bc + bd - bf + be

-a(b + c - d) + f = -ab - ac + ad + f

Expanding Parentheses when Multiplying Two Polynomials

(a + b)(c - d) = a(c - d) + b(c - d) = ac - ad + bc - bd

(-a + b)(c + d) = -a(c + d) + b(c + d)= -ac - ad + bc + bd

Expanding Parentheses when Raising Polynomial to Power

$(a + b)^2 = (a + b)(a + b) = a(a + b) + b(a + b) = a^2 + ab + ab + b^2=$

$=a^2 + 2ab + b^2$

p.2. Order of Expanding Parentheses

The order of expanding parentheses is consistent with the order of operations:

  • first, raise the polynomials in the parentheses to natural powers;
  • then, carry out multiplication and division from left to right;
  • finally, when only the terms remain inside, expand the parentheses and combine like terms.

Example 1. Expand the parentheses and simplify the expression:

-(2a + 5b) + (3a - 2b + 1) - (2a + 4) = -2a - 5b + 3a - 2b + 1 - 2a - 4 = (-2a + 3a - 2a) + (-5b - 2b) + (1 - 4) = -a - 7b - 3

Example 2. Prove that the numerical value of the expression 3(2a - 7) - (a - (5a + 4)) is negative for any a.

Proof:

● 3(2a - 7) - (a - 5(a + 1)) = 6a - 21 - a + 5(a + 1) = 6a - 21- a + 5a + 5 = (6a - a + 5a) + (-21 + 5) = 0 - 16 = -16

Thus, the numerical value of the expression does not depend on the a value, and always negative.

Q.E.D. ○

Example 3. Find the cube of the difference $(2a-1)^3$

Solution:

$(2a - 1)^3 = (2a - 1)(2a - 1)(2a - 1)=(2a - 1)(2a(2a - 1) - (2a - 1))=$

$=(2a - 1)(4a^2 - 2a - 2a + 1)=(2a - 1)(4a^2 - 4a + 1)=$

$=2a(4a^2 - 4a + 1) - (4a^2 - 4a + 1)=8a^3 - 8a^2 + 2a - 4a^2 + 4a - 1=$

$=8a^3 - 12a^2 + 6a - 1$

Answer: $8a^3 - 12a^2 + 6a - 1$

p.3. Expanding Absolute Value Brackets

Rule of Expanding Absolute Value Brackets

For a variable:

$ |x| = \left[ \begin{array}{cc} {x,}&{x \ge 0}\\ {-x,}&{x<0} \end{array} \right. $

For an expression:

$ |f(x)| = \left[ \begin{array}{cc} {f(x),}&{f(x) \ge 0}\\ {-f(x),}&{f(x)<0} \end{array} \right. $

Example 4. Find the solutions of the equation 2(x + 1) - 3|x - 1| = -1

Solution:

First, we find the x value that returns 0 from the absolute value brackets:

$x - 1 = 0 \Rightarrow x = 1$

Therefore, the brackets are expanded as follows:

$ |x-1| = \left[ \begin{array}{cc} {x-1,}&{f(x) \ge 1}\\ {-(x-1),}&{f(x)<1} \end{array} \right. $

Now, we solve two equations with constraints:

$$ |f(x)| = \left[ \begin{array}{cc} {\left\{ \begin{array}{c} 2(x+1)-3(x-1)=-1 \\ x \ge 1 \end{array} \right.} \\ {\left\{ \begin{array}{c} 2(x+1)+3(x-1)=-1 \\ x < 1 \end{array} \right.} \end{array} \right. \Rightarrow \left[ \begin{array}{cc} {\left\{ \begin{array}{c} 2x+2-3x+3=-1 \\ x \ge 1 \end{array} \right.} \\ {\left\{ \begin{array}{c} 2x+2+3x-3=-1 \\ x < 1 \end{array} \right.} \end{array} \right. \Rightarrow $$

$$ \Rightarrow \left[ \begin{array}{cc} {\left\{ \begin{array}{c} -x=-6 \\ x \ge 1 \end{array} \right.} \\ {\left\{ \begin{array}{c} 5x=0 \\ x < 1 \end{array} \right.} \end{array} \right. \Rightarrow \left[ \begin{array}{cc} {\left\{ \begin{array}{c} x=6 \\ x \ge 1 \end{array} \right.} \\ {\left\{ \begin{array}{c} x=0 \\ x < 1 \end{array} \right.} \end{array} \right. \Rightarrow \left[ \begin{array}{cc} {x_1=0}\\ {x_2=6} \end{array} \right. $$

Answer: $x_1=0,x_2=6$

Example 5. Is the equality $|a - b| \cdot |b - a| = (a - b)^2$ an identity?

Solution:

Expand the absolute value brackets:

$$|a - b| = \left[ \begin{array}{cc} {a-b,}&{a \ge b}\\ {b-a,}&{a < b} \end{array} \right. , |b - a| = \left[ \begin{array}{cc} {b-a,}&{a \ge b}\\ {a-b,}&{a < b} \end{array} \right. $$

Find the product:

$$|a - b| \cdot |b - a|= \left[ \begin{array}{cc} {(b-a)(b-a),}&{a < b}\\ {(a-b)(a-b),}&{a \ge b} \end{array} \right. $$

$$(b - a)(b -a)=-(a - b) \cdot (-(a - b)) = (a - b)(a - b)=(a - b)^2$$

Therefore:

$$|a - b| \cdot |b - a| = \left[ \begin{array}{cc} {(a-b)^2,}&{a < b}\\ {(a-b)^2,}&{a \ge b} \end{array} \right. = (a - b)^2, ∀a \in \mathbb R and b \in \mathbb R $$

Thus, the equality is an identity.

Answer: Yes

User Rating

for the week
  • for the week
  • one month
  • three months
    Sign Up
    Log in
    You must accept the user agreement
    Log In
    Login with
    Password recovery
    Complain
        Ask question