Division of Monomial or Polynomial by Monomial

Rule for Division of Polynomial by Monomial

To divide a polynomial by a monomial, divide each term of the polynomial by the given monomial and sum up the results.

The quotient of a polynomial and a monomial is not always a polynomial.

For example, the polynomial (2x+3y) is not divisible by the monomial xz so that the quotient is a polynomial (that is, an integer expression, see §1 of this Guide).

When dividing by a monomial, it is assumed that its variables take such values that the monomial is not equal to 0.

Examples of Problem Solving

Example 1. Find the quotient:

a) $ (3ax+5a-8a^2 ):(2a) = \frac{3ax+5a-8a^2}{2a} = \frac{3ax}{2a}+ \frac{5a}{2a}- \frac{8a^2}{2a} = \frac{3x}{2}+ \frac{5}{2}-4a = 1,5x+2,5-4a $

b) $ (5xy-x^2 z+3x):x = \frac{5xy-x^2 z+3x}{x} = \frac{5xy}{x}- \frac{x^2 z}{x} + \frac{3x}{x} = 5y-xz+3 $

c) $ (16x^3 y-12x^2 y^2 ):(4xy) = \frac{16x^3 y-12x^2 y^2}{4xy} = \frac{16x^3 y}{4xy}- \frac{12x^2 y^2}{4xy} = 4x^2-3xy $

d) $ (27ab^2-15a^3 b):(3ab)= \frac{27ab^2-15a^3 b}{3ab} = \frac{27ab^2}{3ab}- \frac{15a^3 b}{3ab} = 9b-5a^2 $

Example 2. Simplify the expression:

a) (6ax+5x):x-(5ax+6a):a = (6a+5)-(5x+6) = 6a-5x-1

b) $ (a^2 b-ab^2+3ab):(\frac{1}{2} ab)+(6b-18):3 = (2a-2b+6)+(2b-6) = 2a $

Example 3. Evaluate the expression for x=5

a) $ (\frac{x}{2}+x^2 ):x-(x^3+x):(2x) = (\frac{1}{2}+x)-(\frac{x^2}{2}+ \frac{1}{2}) = x- \frac{x^2}{2} $

Substitute: 5- $\frac{5^2}{2}$ = -7,5

b) $ (ax^2+14 ax^3 ):(ax^2 )-(13ax^2+5ax):(ax) = (1+14x)-(13x+5) = x-4 $

Substitute: 5-4 = 1

Example 4. Solve the equation:

a) $ (3x^4+ \frac{1}{3} x^2 ):x-7x^3:(3x^2 ) = 3x^3+8 $

$ 3x^3+ \frac{1}{3} x- \frac{7}{3} x = 3x^3+8 $

-2x = 8

x = -4

b) $ (\frac{1}{5} x^4-3x):(4x)-(8x^5+x^4 ):x^4 = -0,16 $

$ \frac{x}{20}- \frac{3}{4}-1 = -0,16 $

0,05x-8x = -0,16+1,75

-7,95x = 1,59

x = -0,2

User Rating

for the week
  • for the week
  • one month
  • three months
    Sign Up
    Log in
    You must accept the user agreement
    Log In
    Login with
    Password recovery
    Complain
        Ask question